Руководства, Инструкции, Бланки

Прибор Определения Прочности Бетона Ультразвуковым Методом Инструкция img-1

Прибор Определения Прочности Бетона Ультразвуковым Методом Инструкция

Рейтинг: 5.0/5.0 (1665 проголосовавших)

Категория: Инструкции

Описание

ПОСОБИЕ ПО ОБСЛЕДОВАНИЮ стр

ПОСОБИЕ ПО ОБСЛЕДОВАНИЮ. 6.4. Ультразвуковой метод определения прочности бетона
Пособие по обследованию строительных конструкций зданий
6.4. Ультразвуковой метод определения прочности бетона

6.4.1. Принцип определения прочности бетона ультразвуковым методом основан на наличии функциональной связи между скоростью распространения ультразвуковых колебаний и прочностью бетона.

Ультразвуковой метод применяют для определения прочности бетона классов В7,5 - В35 (марок М100-М400) на сжатие.

6.4.2. Прочность бетона в конструкциях определяют экспериментально по установленным градуировочным зависимостям "скорости распространения ультразвука - прочность бетона V = f(R) " или "время распространения ультразвука t - прочность бетона t = f(R) ". Степень точности метода зависит от тщательности построения тарировочного графика.

Тарировочный график строится по данным прозвучивания и прочностных испытаний контрольных кубиков, приготовленных из бетона того же состава, по той же технологии, при том же режиме твердения, что и изделия или конструкции, подлежащие испытанию. При построении тарировочного графика следует руководствоваться указаниями ГОСТ 17624-87.

6.4.3. Для определения прочности бетона ультразвуковым методом применяются приборы: УКБ-1, УКБ-1М, УК-16П, "Бетон-22" и др. (см. табл. 6.2).

6.4.4. Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания. Схема испытаний бетона приведена на рис. 6.18.

Рис. 6.18. Способы ультразвукового прозвучивания бетона

а - схема испытания способом сквозного прозвучивания; б - то же, поверхностного прозвучивания; УП - ультразвуковые преобразователи

При измерении времени распространения ультразвука способом сквозного прозвучивания ультразвуковые преобразователи устанавливают с противоположных сторон образца или конструкции.

Скорость ультразвука V. м/с, вычисляют по формуле

где t - время распространения ультразвука, мкс;

l - расстояние между центрами установки преобразователей (база прозвучивания), мм.

При измерении времени распространения ультразвука способом поверхностного прозвучивания ультразвуковые преобразователи устанавливают на одной стороне образца или конструкции по схеме, приведенной на рис. 6.18.

6.4.5. Число измерений времени распространения ультразвука в каждом образце должно быть: при сквозном прозвучивании - 3, при поверхностном - 4.

Отклонение отдельного результата измерения времени распространения ультразвука в каждом образце от среднего арифметического значения результатов измерений для данного образца, не должно превышать 2%.

Измерение времени распространения ультразвука и определение прочности бетона производятся в соответствии с указаниями паспорта (технического условия применения) данного типа прибора и указаний ГОСТ 17624-87.

6.4.6. На практике нередки случаи, когда возникает необходимость определения прочности бетона эксплуатируемых конструкций при отсутствии или невозможности построения градуировочной таблицы. В этом случае определение прочности бетона проводят в зонах конструкций, изготовленных из бетона на одном виде крупного заполнителя (конструкции одной партии). Скорость распространения ультразвука V определяют не менее чем в 10 участках обследуемой зоны конструкций, по которым определяют среднее значение V. Далее намечают участки, в которых скорость распространения ультразвука имеет максимальное Vmax и минимальное Vmin значения, а также участок, где скорость имеет величину Vn наиболее приближенную к значению V. а затем выбуривают из каждого намеченного участка не менее чем по два керна, по которым определяют значения прочности в этих участках: Rmax. Rmin. Rn соответственно. Прочность бетона RH определяют по формуле

Коэффициенты а1 и a0 вычисляют по формулам

6.4.7. При определении прочности бетона по образцам, отобранным из конструкции, следует руководствоваться указаниями ГОСТ 28570-90.

6.4.8. При выполнении условия 10% допускается ориентировочно определять прочность: для бетонов классов прочности до В25 по формуле

где А - коэффициент, определяемый путем испытаний не менее трех кернов, вырезанных из конструкций.

6.4.9. Для бетонов классов прочности выше В25 прочность бетона в эксплуатируемых конструкциях может быть оценена также сравнительным методом, принимая в основу характеристики конструкции с наибольшей прочностью. В этом случае

6.4.10. Такие конструкции, как балки, ригели, колонны должны прозвучиваться в поперечном направлении, плита - по наименьшему размеру (ширине или толщине), а ребристая плита - по толщине ребра.

6.4.11. При тщательном проведении испытаний этот метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и испытанию образцов.

6.5. Определение толщины защитного слоя бетона и расположения арматуры

6.5.1. Для определения толщины защитного слоя бетона и расположения арматуры в железобетонной конструкции при обследованиях применяют магнитные, электромагнитные методы по ГОСТ 22904-93 или методы просвечивания и ионизирующих излучений по ГОСТ 17623-87 с выборочной контрольной проверкой получаемых результатов путем пробивки борозд и непосредственными измерениями.

Радиационные методы, как правило, применяют для обследования состояния и контроля качества сборных и монолитных железобетонных конструкций при строительстве, эксплуатации и реконструкции особо ответственных зданий и сооружений.

Радиационный метод основан на просвечивании контролируемых конструкций ионизирующим излучением и получении при этом информации о ее внутреннем строении с помощью преобразователя излучения. Просвечивание железобетонных конструкций производят при помощи излучения рентгеновских аппаратов, излучения закрытых радиоактивных источников.

Транспортировку, хранение, монтаж и наладку радиационной аппаратуры проводят только специализированные организации, имеющие специальное разрешение на проведение указанных работ.

6.5.2. Магнитный метод основан на взаимодействии магнитного или электромагнитного поля прибора со стальной арматурой железобетонной конструкции.

Толщину защитного слоя бетона и расположение арматуры в железобетонной конструкций определяют на основе экспериментально установленной зависимости между показаниями прибора и указанными контролируемыми параметрами конструкций.

6.5.3. Для определения толщины защитного слоя бетона и расположения арматуры из современных приборов применяют в частности ИСМ, ИЗС-10Н (ТУ25-06.18-85.79). Прибор ИЗС-10Н обеспечивает измерение толщины защитного слоя бетона в зависимости от диаметра арматуры в следующих пределах:

при диаметре стержней арматуры от 4 до 10 мм толщины защитного слоя - от 5 до 30 мм;

при диаметре стержней арматуры от 12 до 32 мм толщины защитного слоя - от 10 до 60 мм.

Прибор обеспечивает определение расположения проекций осей стержней арматуры на поверхность бетона:

диаметрами от 12 до 32 мм - при толщине защитного слоя бетона не более 60 мм;

диаметрами от 4 до 12 мм - при толщине защитного слоя бетона не более 30 мм.

При расстоянии между стержнями арматуры менее 60 мм применение приборов типа ИЗС нецелесообразно.

6.5.4. Определение толщины защитного слоя бетона и диаметра арматуры производится в следующем порядке:

до проведения испытаний сопоставляют технические характеристики применяемого прибора с соответствующими проектными (ожидаемыми) значениями геометрических параметров армирования контролируемой железобетонной конструкции;

при несоответствии технических характеристик прибора параметрам армирования контролируемой конструкции необходимо установить индивидуальную градуировочную зависимость в соответствии с ГОСТ 22904-93.

Число и расположение контролируемых участков конструкции назначают в зависимости от:

цели и условий испытаний;

особенности проектного решения конструкции;

технологии изготовления или возведения конструкции с учетом фиксации арматурных стержней;

условий эксплуатации конструкции с учетом агрессивности внешней среды.

6.3.5. Работу с прибором следует производить в соответствии с инструкцией по его эксплуатации. В местах измерений на поверхности конструкции не должно быть наплывов высотой более 3 мм.

6.5.6. При толщине защитного слоя бетона, меньшей предела измерения применяемого прибора, испытания проводят через прокладку толщиной (10±0,1) мм из материала, не обладающего магнетическими свойствами.

Фактическую толщину защитного слоя бетона в этом случае определяют как разность между результатами измерения и толщиной этой прокладки.

6.5.7. При контроле расположения стальной арматуры и бетоне конструкции, для которой отсутствуют данные о диаметре арматуры и глубине ее расположения, определяют схему расположения арматуры и измеряют ее диаметр путем вскрытия конструкции.

6.5.8. Для приближенного определения диаметра арматурного стержня определяют и фиксируют на поверхности железобетонной конструкции место расположения арматуры прибором типа ИЗС-10Н.

Устанавливают преобразователь прибора на поверхности конструкции, и по шкалам прибора или по индивидуальной градуировочной зависимости определяют несколько значений толщины защитного слоя бетона dpr для каждого из предполагаемых диаметров арматурного стержня, которые могли применяться для армирования данной конструкции.

Между преобразователем прибора и поверхностью бетона конструкции устанавливают прокладку соответствующей толщины (например, 10 мм), вновь проводят измерения и определяют расстояние для каждого предполагаемого диаметра арматурного стержня.

Для каждого диаметра арматурного стержня сопоставляют значения dpr и (dabs - de ).

В качестве фактического диаметра d принимают значение, для которого выполняется условие

где dabs - показание прибора с учетом толщины прокладки.

Индексы в формуле (6.12) обозначают:

s - шаг продольной арматуры;

р - шаг поперечной арматуры;

е - наличие прокладки;

de - толщина прокладки.

6.5.9. Результаты измерений заносят в журнал, форма которого приведена в табл. 6.5.

6.5.10. Фактические значения толщины защитного слоя бетона и расположение стальной арматуры в конструкции по результатам измерений сравнивают со значениями, установленными технической документацией на эти конструкции.

6.5.11. Результаты измерений оформляют протоколом, который должен содержать следующие данные:

наименование проверяемой конструкции (ее условное обозначение);

объем партии и число контролируемых конструкций;

тип и номер применяемого прибора;

номера контролируемых участков конструкций и схему их расположения на конструкции;

проектные значения геометрических параметров армирования контролируемой конструкции;

результаты проведенных испытаний;

ссылку на инструктивно-нормативный документ, регламентирующий метод испытаний.

Форма записи результатов измерений толщины защитного слоя бетона железобетонных конструкций

Подпись лица, проводившего испытания _______________________

6.6. Определение прочностных характеристик арматуры

6.6.1. Расчетные сопротивления неповрежденной арматуры разрешается принимать по проектным данным или по нормам проектирования железобетонных конструкций.

В зависимости от класса стали рекомендуется принимать следующие расчетные сопротивления арматуры на растяжение и сжатие:

для гладкой арматуры - 225 МПа (класс А-I);

для арматуры с профилем, гребни которого образуют рисунок винтовой линии, - 280 МПа (клсс А-II);

для арматуры периодического профиля, гребни которого образуют рисунок "елочка", - 355 МПа (класс А-III).

Жесткая арматура из прокатных профилей принимается в расчетах с расчетным сопротивлением при растяжении, сжатии и изгибе равным 210 МПа.

6.6.2. При отсутствии необходимой документации и информации класс арматурных сталей устанавливается испытанием вырезанных из конструкции образцов с сопоставлением предела текучести, временного сопротивления и относительного удлинения при разрыве с данными ГОСТ 380-71, или приближенно по виду арматуры, профилю арматурного стержня и времени возведения объекта согласно рекомендациям п. 6.6.1.

6.6.3. Расположение, количество и диаметр арматурных стержней определяются либо путем вскрытия и прямых замеров, либо применением магнитных или радиографических методов (по ГОСТ 22904-93 и ГОСТ 17625-83 соответственно) (см. п. 6.5.).

6.6.4. Для определения механических свойств стали поврежденных конструкций рекомендуется использовать методы:

испытания стандартных образцов, вырезанных из элементов конструкций, согласно указаниям ГОСТ 7564-73*;

испытания поверхностного слоя металла на твердость согласно указаниям ГОСТ 18661-73, ГОСТ 9012-59* и ГОСТ 9013-59*.

6.6.5. Заготовки для образцов из поврежденных элементов рекомендуется вырезать в местах, не получивших пластических деформаций при повреждении, и чтобы после вырезки были обеспечены их прочность и устойчивость.

При отборе заготовок для образцов элементы конструкций разделяют на условные партии по 10-15 однотипных конструктивных элементов: ферм, балок, колонн и др.

Заготовки для образцов рекомендуется отбирать в трех однотипных элементах конструкций (верхний пояс, нижний пояс, первый сжатый раскос и т.п.) в количестве 1-2 шт. из одного элемента.

Все заготовки должны быть замаркированы в местах их взятия и марки обозначены на схемах, прилагаемых к материалам обследования конструкций.

6.6.6. Характеристики механических свойств стали - предел текучести sт. временное сопротивление sd и относительное удлинение при разрыве d получают путем испытания на растяжение образцов согласно ГОСТ 1497-84*.

Определение основных расчетных сопротивлений стали конструкций производится путем деления среднего значения предела текучести на коэффициент надежности по материалу gm = 1,05 или временного сопротивления на коэффициент надежности g = 1,05. При этом за расчетное сопротивление принимается наименьшая из величин Rт. Rd. которые найдены соответственно по sт и sd .

6.6.7. При определении механических свойств металла по твердости поверхностного слоя рекомендуется применять портативные переносные приборы: Польди-Хютта, Баумана, ВПИ-2, ВПИ-3к и др.

Полученные при испытании на твердость данные переводятся в характеристики механических свойств металла по эмпирической формуле. Так, зависимость между твердостью по Бринелю и временным сопротивлением металла устанавливается по формуле

где Нb - твердость по Бринелю.

6.6.8. Выявленные фактические характеристики арматуры сопоставляются с требованиями СНиП 2.03.01-84* и СНиП 2.03.04-84*, и на этой основе дается оценка эксплуатационной пригодности арматуры.

6.7. Определение прочности бетона путем лабораторных испытаний

6.7.1. Лабораторное определение прочности бетона существующих конструкций производится путем испытания образцов, взятых из этих конструкций.

Отбор образцов производится путем выпиливания кернов диаметром от 50 до 150 мм на участках, где ослабление элемента не оказывает существенного влияния на несущую способность конструкций. Этот метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и обработке образцов.

6.7.2. При определении прочности по образцам, отобранным из бетонных и железобетонных конструкций, следует руководствоваться указаниями ГОСТ 28570-90.

Сущность метода состоит в измерении минимальных усилий, разрушающих выбуренные или выпиленные из конструкции образцы бетона при их статическом нагружении с постоянной скоростью роста нагрузки.

6.7.3. Форма и номинальные размеры образцов в зависимости от вида испытаний бетона должны соответствовать ГОСТ 10180-90.

Допускается применение цилиндров диаметром от 44 до 150 мм, высотой от 0,8 до 2 диаметров при определении прочности на сжатие, от 0,4 до 2 диаметров при определении прочности на растяжение при раскалывании и от 1,0 до 4 диаметров при определении прочности при осевом растяжении.

За базовый при всех видах испытаний принимают образец с размером рабочего сечения 150´150 мм.

6.7.4. Места отбора проб бетона следует назначать после визуального осмотра конструкций в зависимости от их напряженного состояния с учетом минимально возможного снижения их несущей способности. Пробы рекомендуется отбирать из мест, удаленных от стыков и краев конструкций.

После извлечения проб места отбора следует заделывать мелкозернистым бетоном или бетоном, из которого изготовлены конструкции.

Участки для выбуривания или выпиливания проб бетона следует выбирать в местах, свободных от арматуры.

6.7.5. Для выбуривания образцов из бетона конструкций применяют сверлильные станки типа ИЕ 1806 по ТУ 22-5774 с режущим инструментом в виде кольцевых алмазных сверл типа СКА по ТУ 2-037-624, ГОСТ 24638-85*Е или твердосплавных концевых сверл по ГОСТ 11108-70.

Для выпиливания образцов из бетона конструкций применяют распиловочные станки типов УРБ-175 по ТУ 34-13-10500 или УРБ-300 по ТУ 34-13-10910 с режущим инструментом в виде отрезных алмазных дисков типа АОК по ГОСТ 10110-87Е или ТУ 2-037-415.

Допускается применение другого оборудования и инструментов для изготовления образцов из бетона конструкций, обеспечивающих изготовление образцов, отвечающих требованиям ГОСТ 10180-90.

6.7.6. Испытание образцов на сжатие и все виды растяжения, а также выбор схемы испытания и нагружения производят по ГОСТ 10180-90.

6.7.7. Опорные поверхности испытываемых на сжатие образцов, в случае, когда их отклонения от поверхности плиты пресса более 0,1 мм, должны быть исправлены нанесением слоя выравнивающего состава. В качестве типовых следует использовать цементное тесто, цементно-песчаный раствор или эпоксидные композиции.

Толщина слоя выравнивающего состава на образце должна быть не более 5 мм.

6.7.8. Прочность бетона испытываемого образца с точностью до 0,1 МПа при испытании на сжатие и с точностью до 0,01 МПа при испытаниях на растяжение вычисляют по формулам:

на осевое растяжение ;

на растяжение при раскалывании ;

на растяжение при изгибе ,

где F - разрушающая нагрузка, Н;

А - площадь рабочего сечения образца, мм 2 ;

а. b. l - соответственно ширина и высота поперечного сечения призмы и расстояние между опорами при испытании образцов на растяжение при изгибе, мм.

Для приведения прочности бетона в испытанном образце к прочности бетона в образце базового размера и формы прочности, полученные по указанным формулам, пересчитывают по формулам:

на осевое растяжение ;

на растяжение при раскалывании ;

на растяжение при изгибе ,

где h1. и h2 - коэффициенты, учитывающие отношение высоты цилиндра к его диаметру, принимаемые при испытаниях на сжатие по табл. 6.6, при испытаниях на растяжение при раскалывании по табл. 6.7 и равные единице для образцов другой формы;

a, b, g, d - масштабные коэффициенты, учитывающие форму и размеры поперечного сечения испытанных образцов, которые принимают по табл. 6.6-6.9 или определяют экспериментально по ГОСТ 10180-90.

Другие статьи

Прибор для измерения прочности бетона: видео-инструкция по монтажу своими руками, особенности ультразвуковых изделий для определения неразрушающим мет

Прибор для измерения прочности бетона – основные виды. Механический и ультразвуковой методы применения

Бетон относится к одному из самых распространенных типов конструкций, от его качества и прочности во многом зависит долговечность и надежность всего объекта в целом. Неудивительно, что определение прочностных свойств является очень важной задачей в процессе возведения объекта и сдачи его в эксплуатацию. Для этого используются различные методы и виды оборудования, именно их мы и рассмотрим в рамках данного обзора.

На фото — благодаря появлению высокотехнологичных приборов определение прочности в наши дни стало намного проще

Основные способы проверки бетона

Стоит отметить, что оборудование данной группы может использоваться для проверки прочности, как бетона, так и кирпича. Под прочностью понимается способность материала противостоять разрушению под действием внутреннего напряжения и различным внешним факторам, чем стойкость выше, тем надежнее и долговечнее конструкция.

Оборудование для проверки прочности может быть и очень большим

Провести проверку можно посредством двух способов:

  • Разрушающий: суть этого метода заключается в том, что в специальном прессе раздавливаются предварительно подготовленные заготовки. Это могут быть кубы, которые отливаются из контролируемого бетона или керны – фрагменты цилиндрической формы, получить которые помогает алмазное бурение отверстий в бетоне и изъятие фрагмента.

Чтобы получить керн, необходимо проводить бурение бетона

  • Второй вариант – использовать прибор для определения прочности бетона неразрушающим методом. Такое оборудование измеряет физические величины, оказывающие прямое влияние на прочность бетона. и пересчитывает их, выдавая нужные показатели. Естественно, чем качественнее оборудование, тем меньше погрешность и выше точность исследований.
Виды приборов

При проведении измерительных мероприятий чаще всего используется один из двух основных типов измерительного оборудования. Естественно, проведение работ своими руками подразумевает именно этот вариант, так как цена специального пресса очень велика, да и нет смысла держать его, если у вас нет специальной испытательной лаборатории по оказанию услуг по измерению прочности и других показателей.

Определение прочности механическим методом

Если проводится неразрушающий контроль (НК) механическим способом, то главный нормативный акт, которым обязательно следует руководствоваться, это ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами НК». В данном документе изложены правила испытаний как тяжелых, так и легких бетонов с предельными значениями прочности, не выходящими за рамки диапазона от 5 до 100 Мпа.

В данную группу приспособлений входит несколько основных разновидностей оборудования, которое отличается по способу определения тех или иных косвенных характеристик.

Это могут быть следующие показатели:

  • Энергия удара специальным бойком.
  • Значение отскока бойка от прижатого к стене ударника.
  • Размер оставленного следа от удара.
  • Показатель усилия, необходимого для разрушения небольшого участка на ребрах конструкции или при вырыве закрепленного анкерного болта.

Прибор может состоять из бойка и блока управления, или все может располагаться в бойке (самые современные варианты реализуются именно так)

Особенности проведения измерений с помощью того или иного метода зависят от множества факторов, поэтому инструкция по эксплуатации прибора обязательна к изучению. Рассмотрим самый популярный вариант проведения испытаний – метод упругого отскока.

Технология выглядит следующим образом:

  • Измерительный узел должен располагаться перпендикулярно поверхность, чем больше перекос, тем больше погрешность измерений, не стоит забывать об этом.

Сила должна прилагаться перпендикулярно, это гарантирует точность измерений

  • Проверку нужно провести на разных участках поверхности, для корректности измерений следует иметь как минимум 5 значений и определить среднее арифметическое.
  • С помощью специальной формулы высчитывается показатель прочности той или иной конструкции. На самом деле, все достаточно просто и, следуя рекомендациям и требованиям инструкции, можно проводить качественные измерения, даже не имея соответствующей практики.

Современные приборы очень компактны и удобны в работе

Важно!
Чтобы показатели были точными и корректными, не стоит забывать, что минимальная толщина бетонной конструкции не должна быть менее 100 мм.

Использование ультразвукового метода

При использовании данного способа расчета показателей прочности бетона или кирпича все требования к измерениям и порядок их проведения определяет ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности». Стоит отметить, что с помощью такого метода можно проводить измерения практически всех видов бетона, это делает данный вариант максимально универсальным.

Ультразвуковой прибор для определения прочности бетона отличается простотой и удобством работы

С помощью ультразвука можно измерять как показатели готовых конструкций, так и материала, который еще не набрал оптимальные показатели прочности. То есть, можно отслеживать процесс отвердения материала.

Особенности данного вида измерений заключаются в следующем:

  • Сам метод основан на физической взаимосвязи значения прочности бетона и скорости распространения по нему звуковых колебаний. Эта взаимосвязь может выражаться в виде формулы, графика или таблицы, специалисты называют ее «градуировочная характеристика». Этот показатель определяется отдельно для каждого объекта измерений, в процессе проверки используется поверхностное либо сквозное прозвучивание.
  • По результатам проверки и подбора градуировочных характеристик проводятся основные испытательные мероприятия, причем проводиться они должны тем же способом, что и проверочные.
  • На основе полученных показателей и определяется фактическая прочность того или иного участка бетонной конструкции.

Важно!
Чем точнее будет определена градуировочная характеристика, тем выше будет точность окончательных результатов.


Проверка может понадобиться в самых различных случаях: от определения надежности конструкции до расчета динамики застывания бетонного материала. Если будет осуществляться резка железобетона алмазными кругами,также желательно измерить прочность и подобрать оптимальный тип круга по бетону.

Приборы могут иметь самую различную конфигурацию, важно, чтобы точность измерений была как можно выше

Вывод

В некоторых случаях от правильности измерений зависит очень многое, особенно если дело касается ремонтных работ и мероприятий по укреплению конструкции. Только корректные данные гарантируют, что будет выбран нужный вариант дальнейших действий. Видео в этой статье поможет разобраться в некоторых особенностях использования измерительных приборов.

ГОСТ 17624-2012 Бетоны

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

Ультразвуковой метод определения прочности

Concrete. Ultrasonic method of strength determination

_________________________________________________________________
Текст Сравнения ГОСТ 17624-2012 с ГОСТ 17624-87 см. по ссылке .
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 2014-01-01


Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-97 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ), подразделением ОАО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (приложение Е к протоколу от 18 декабря 2012 г. N 41)

За принятие проголосовали:

4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 1972-ст межгосударственный стандарт ГОСТ 17624-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

1 Область применения

1 Область применения


Настоящий стандарт распространяется на конструкционные тяжелые и легкие бетоны монолитных и сборных бетонных и железобетонных изделий, конструкций и сооружений (далее - конструкции) и устанавливает ультразвуковой импульсный метод (далее - ультразвуковой метод) определения прочности бетона на сжатие. Контроль и оценку прочности бетона конструкций проводят по ГОСТ 18105 .

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 ультразвуковой метод определения прочности бетона: Неразрушающий метод определения прочности бетона, основанный на зависимости косвенной характеристики (показания прибора) от прочности бетона.

3.2 косвенная характеристика прочности (косвенный показатель): Скорость, время распространения ультразвука или другое показание прибора при измерении прочности бетона.

3.3 градуировочная зависимость: Графическая или аналитическая зависимость, связывающая косвенный показатель с прочностью бетона.

3.4 база прозвучивания: Расстояние между центрами рабочих поверхностей ультразвуковых преобразователей (излучателя и приемника), установленных на одну и ту же поверхность конструкции при поверхностном прозвучивании, и между центрами рабочих поверхностей преобразователей при сквозном прозвучивании.

3.5 коэффициент совпадения: Коэффициент, используемый для корректировки ранее построенной или универсальной градуировочной зависимости.

4 Общие положения

4.1 Ультразвуковой метод применяют для определения прочности бетона в установленном проектной документацией промежуточном и проектном (как правило, 28-суточном) возрасте и возрасте, превышающем проектный при обследовании конструкций.

4.2 Ультразвуковые измерения в бетоне проводят методами сквозного или поверхностного прозвучивания в соответствии с приложением А. Определение прочности бетона монолитных конструкций проводят методом поверхностного прозвучивания. Сквозное прозвучивание конструкций допускается проводить при возможности измерения базы прозвучивания с учетом требований 6.19.

4.3 Прочность бетона в конструкциях определяют по экспериментально установленным градуировочным зависимостям косвенного показателя от прочности бетона (см. 3.2, 3.3).

4.4 Прочность бетона определяют на участках конструкций, не имеющих видимых повреждений (отслоения защитного слоя, трещин, каверн и др.).

4.5 Испытания ультразвуковым методом проводят при положительной температуре бетона. Допускается проводить испытания конструкций ультразвуковым методом при отрицательной температуре бетона при условии, что градуировочная зависимость построена в соответствии с 6.10.

5 Средства испытаний

5.1 Ультразвуковые измерения проводят приборами, предназначенными для измерения времени и скорости распространения ультразвука в бетоне, аттестованными и поверенными в установленном порядке.

5.2 Предел допускаемой абсолютной погрешности измерения времени распространения ультразвука на стандартных образцах, входящих в комплект прибора, не должен превышать значения


где - время распространения ультразвука, мкс.

5.3 При использовании нескольких приборов при контроле прочности бетона на одном строительном объекте их показания перед установлением градуировочной зависимости следует оттарировать на одном эталоне так, чтобы погрешность их показаний не превышала 0,5%.

5.4 При поверхностном прозвучивании размер базы должен быть не менее 120 и не более 200 мм.

5.5 Между поверхностью бетона и рабочими поверхностями ультразвуковых преобразователей должен быть обеспечен надежный акустический контакт. Способ обеспечения контакта должен быть одинаковым при контроле бетона в конструкции и установлении градуировочной зависимости.

5.6 Не допускается применение ультразвуковых приборов, градуированных в единицах прочности бетона для непосредственного определения его прочности.

Косвенный показатель (показание прибора) применяют только после установления градуировочной зависимости "показания прибора - прочность бетона" или уточнения градуировочной зависимости, установленной в приборе в соответствии с требованиями настоящего стандарта по приложению Д.

6 Подготовка к испытанию

6.1 Подготовка к испытанию включает в себя проверку используемых приборов в соответствии с инструкциями по их эксплуатации и получение данных для построения градуировочных зависимостей в соответствии с требованиями настоящего стандарта.

6.2 Для контроля прочности бетона при поверхностном прозвучивании градуировочную зависимость устанавливают на основании следующих данных:

- результатов параллельных испытаний одних и тех же участков конструкций ультразвуковым методом и методом отрыва со скалыванием по ГОСТ 22690 ;

- результатов испытаний конструкций ультразвуковым методом и механических испытаний образцов-кернов, отобранных из тех же участков конструкций и испытанных в соответствии с ГОСТ 28570 ;

- результатов испытаний ультразвуковым методом и механических испытаний одних и тех же стандартных бетонных образцов по ГОСТ 10180 .

6.3 Для контроля прочности бетона при сквозном прозвучивании градуировочную зависимость устанавливают на основании следующих данных:

- результатов испытаний ультразвуковым методом участков конструкций и испытаний в соответствии с ГОСТ 28570 образцов-кернов, отобранных из тех же участков конструкций;

- результатов испытаний ультразвуковым методом и механических испытаний одних и тех же стандартных бетонных образцов по ГОСТ 10180 .

6.4 Градуировочные зависимости устанавливают отдельно по каждому виду нормируемой прочности, указанному в 4.1 для бетонов одного номинального состава. Допускается строить одну градуировочную зависимость для бетонов одного вида, отличающихся по номинальному составу и значению нормируемой прочности, но не более трех нормированных классов.

6.5 При построении градуировочной зависимости по результатам параллельных испытаний ультразвуковым методом и методом отрыва со скалыванием или испытаний образцов, отобранных из конструкций, на подлежащих испытанию конструкциях или их зонах предварительно проводят ультразвуковые измерения и определяют участки с минимальным и максимальным косвенными показателями. Затем выбирают не менее 12 участков, включая участки, в которых значение косвенного показателя максимальное, минимальное и имеет промежуточные значения.

После испытания ультразвуковым методом эти участки испытывают методом отрыва со скалыванием по ГОСТ 22690 или отбирают из них образцы для испытания по ГОСТ 28570 .

6.6 Возраст бетона отдельных участков не должен отличаться более чем на 25% среднего возраста бетона зоны конструкции или группы конструкций, подлежащей контролю. Возраст отдельных участков конструкции не учитывают, если градуировочную зависимость устанавливают для конструкций, возраст которых превышает два месяца.

6.7 На каждом участке определяют положение арматуры, а затем ультразвуковым прибором проводят не менее двух измерений косвенного показателя. Прозвучивание проводят в двух взаимно перпендикулярных направлениях под углом примерно 45° к направлению арматуры, параллельно или перпендикулярно к ней. При прозвучивании в направлении, параллельном арматуре, линию прозвучивания располагают между арматурными стержнями (см. рисунок 1).

Рисунок 1 - Расположение линии прозвучивания

1 - положение прибора при испытании; 2 - расположение арматуры

Рисунок 1 - Расположение линии прозвучивания

Отклонение отдельных результатов измерений скорости или времени распространения ультразвука на каждом участке от среднего арифметического значения результатов измерений для данного участка не должно превышать 2%. Результаты измерений, не удовлетворяющие этому условию, не учитывают при вычислении среднеарифметического значения скорости (времени) распространения ультразвука для данного участка.

6.8 Градуировочную зависимость устанавливают по единичным значениям косвенного показателя и прочности бетона. За единичное значение косвенного показателя принимают среднее значение косвенных показателей на участке. За единичное значение прочности бетона принимают прочность бетона участка, определенную методом отрыва со скалыванием или испытанием отобранных образцов.

При построении градуировочной зависимости по результатам испытаний образцов-кубов за единичное значение прочности бетона принимают среднюю прочность бетона в серии образцов, определенную по ГОСТ 10180 .

6.9 При необходимости проведения испытаний монолитных конструкций непосредственно после тепловой обработки при температуре поверхности бетона выше 40 °С ультразвуковые испытания на конструкции проводят при этой температуре, а испытание бетона методом отрыва со скалыванием или испытания образцов - после его остывания.

6.10 При испытании монолитных конструкций при отрицательной температуре бетона (см. 4.5) участки, выбранные для построения градуировочной зависимости, предварительно испытывают ультразвуковым методом, а затем отогревают до температуры не ниже 0 °С на глубине 50 мм и испытывают методом отрыва со скалыванием или отбирают образцы для последующего испытания при положительной температуре.

6.11 При построении градуировочной зависимости по результатам испытаний ультразвуковым методом бетонных образцов-кубов и механических испытаний тех же образцов-кубов механические испытания проводят по ГОСТ 10180 после испытаний ультразвуковым методом.

При необходимости проведения ультразвуковых испытаний бетона конструкций после термообработки (горячего бетона) для определения отпускной прочности бетона этих конструкций после их остывания допускается устанавливать градуировочную зависимость по результатам испытаний ультразвуковым методом горячих образцов и механических испытаний тех же образцов после их остывания.

6.12 Для построения градуировочной зависимости по результатам испытаний образцов-кубов используют результаты испытаний не менее 15 серий образцов-кубов.

Образцы изготовляют в соответствии с требованиями ГОСТ 10180 в разные смены в течение не менее трех суток из бетонной смеси того же номинального состава, по той же технологии, при том же режиме твердения, что и конструкции, подлежащие контролю.

6.13 При установлении градуировочной зависимости для метода сквозного прозвучивания по результатам испытаний образцов-кубов измерения проводят, как показано на рисунке 2а.

Рисунок 2 - Схемы испытания образцов-кубов при прозвучивании


а - схема испытания образцов-кубов способом сквозного прозвучивания; б - схема испытания образцов-кубов способом поверхностного прозвучивания; УП - ультразвуковые преобразователи; - база прозвучивания; 1 - направление формования; 2 - направление испытания при сжатии

Рисунок 2 - Схемы испытания образцов-кубов при прозвучивании

6.14 База прозвучивания должна быть не менее 100 мм. Допускается базу прозвучивания уменьшать до 70 мм при испытании мелкозернистых бетонов и бетонов на ранних стадиях твердения (скорость ультразвука менее 2000 м/с).

6.15 При установлении градуировочной зависимости для метода поверхностного прозвучивания по результатам испытаний образцов-кубов изменения* проводят в соответствии с рисунком 2б.
_______________
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

База прозвучивания должна быть не менее 120 мм.

Измерения следует проводить на поверхности, занимающей при изготовлении то же положение относительно формы и направления формования, что и контролируемая поверхность изделия.

6.16 Число измерений на каждом образце должно быть при сквозном прозвучивании три, при поверхностном - четыре.

6.17 Отклонение отдельного результата измерения косвенного показателя в каждом образце от среднеарифметического значения результатов измерений для данного образца не должно превышать 2%.

Результаты измерения времени распространения ультразвука в образцах-кубах, не удовлетворяющие указанному условию, не учитывают при расчете среднеарифметического значения косвенного показателя в данной серии образцов. При наличии в серии двух образцов, не удовлетворяющих этому условию, результаты испытаний серии бракуют.

6.18 В зоне контакта ультразвуковых преобразователей с поверхностью бетона не должно быть раковин и воздушных пор глубиной более 3 мм и диаметром более 6 мм, а также выступов высотой более 0,5 мм. Поверхность бетона должна быть очищена от пыли.

6.19 Относительная погрешность измерения базы прозвучивания не должна превышать 0,5%.

6.20 Методика установления, корректировки градуировочной зависимости, оценки ее погрешности и условия ее применения приведены в приложении Б.

Рекомендуется использовать линейную зависимость . где - прочность бетона, - косвенный показатель.

6.21 Поверка и корректировка установленной градуировочной зависимости с учетом дополнительно получаемых результатов испытаний должны проводиться не реже одного раза в месяц по методике, приведенной в приложении Б. Число образцов или участков при проведении корректировки должно быть не менее трех.

6.22 Допускается ориентировочное определение прочности бетона с использованием зависимости, ранее установленной для бетона, отличающегося от испытуемого, или универсальной градуировочной зависимости.

6.23 Универсальные градуировочные зависимости для тяжелых бетонов классов В7,5-В35 и В35-В60 приведены в приложении Г.

Указанные зависимости могут использоваться для ориентировочной оценки прочности бетона от 12,5 до 45 МПа и от 45 до 75 МПа соответственно при поверхностном прозвучивании с базой 150 мм.

6.24 Ранее установленную или универсальную градуировочную зависимость для конкретных условий испытаний следует уточнять с помощью коэффициента совпадения, методика определения которого приведена в приложении Д.

6.25 Установленные или универсальные градуировочные зависимости могут использоваться без привязки к конкретным условиям испытаний по приложению Д только для получения ориентировочных значений прочности. Не допускается использовать ориентировочные значения прочности для оценки класса бетона по прочности.

7 Определение прочности бетона в конструкциях

7.1 Число и расположение контролируемых участков в конструкциях должны соответствовать требованиям ГОСТ 18105 и указываться в проектной документации на конструкции или устанавливаться с учетом:

- задач контроля (определение фактического класса бетона, разопалубочной или отпускной прочности, выявление участков пониженной прочности и др.);

- вида конструкций (колонны, балки, плиты и др.);

- размещения захваток и порядка бетонирования;

7.2 Прочность бетона каждого участка конструкции может быть определена методом поверхностного или сквозного прозвучивания.

7.3 Монолитные конструкции, а также сборные конструкции, для которых применение сквозного прозвучивания затруднено (плоские, ребристые и многопустотные панели перекрытий, стеновые панели, трубы и т.д.), испытывают методом поверхностного прозвучивания.

7.4 База при поверхностном прозвучивании при измерениях на конструкциях должна быть такой же, как и при установлении градуировочной зависимости.

7.5 Возраст бетона контролируемой конструкции не должен отличаться от возраста бетона конструкции (образца), испытанной для установления градуировочной зависимости более чем на 50% при контроле нормируемой прочности бетона и 25% - при определении прочности бетона в процессе твердения.

7.6 Качество поверхности бетона контролируемого участка конструкции в зоне контакта с ультразвуковыми преобразователями должно соответствовать требованиям, приведенным в 6.18.

7.7 При сквозном прозвучивании ультразвуковое измерение следует проводить в направлении, перпендикулярном к направлению рабочей арматуры.

При поверхностном прозвучивании для исключения влияния арматуры измерение должно проводиться по схеме, приведенной на рисунке 1.

7.8 На каждом участке конструкции проводят не менее двух измерений при поверхностном прозвучивании и одно измерение - при сквозном прозвучивании. Отклонение отдельных результатов от среднего значения при поверхностном прозвучивании должно соответствовать условиям, приведенным в 6.7.

Прочность бетона каждого участка определяют по среднему значению скорости (времени) ультразвука по градуировочной зависимости, установленной в соответствии с разделом 6, при условии, что измеренное значение косвенного показателя находится в пределах между наименьшим и наибольшим значениями, полученными при построении или уточнении универсальной градуировочной зависимости.

7.9 Статистическую оценку класса бетона по результатам испытаний ультразвуковым методом проводят по ГОСТ 18105 только в тех случаях, когда прочность бетона определяют по градуировочной зависимости, построенной в соответствии с разделом 6.

При использовании универсальных градуировочных зависимостей путем их привязки к конкретным условиям (см. приложение Д) не допускается проводить статистический контроль, при этом оценку бетона проводят по схеме Г ГОСТ 18105 .

7.10 Указания по назначению числа испытуемых участков монолитных и сборных конструкций при контроле прочности бетона неразрушающим ультразвуковым методом в зависимости от вида конструкции приведены в приложении Е.

8 Оформление результатов испытаний

8.1 Результаты испытаний оформляют в заключении.

8.2 В заключении приводят:

- данные об испытанных конструкциях с указанием проектного класса прочности, даты бетонирования и проведения испытаний;

- данные, используемые для построения градуировочной зависимости или ее привязки к конкретным условиям;

- данные о числе участков определения прочности бетона с указанием их размещения;

- прочность бетона участков и среднюю прочность бетона захватки или конструкции;

- фактический класс бетона по прочности.

8.3 Результаты испытаний представляют в табличной форме, в которой указывают вид конструкций, проектный класс бетона, возраст бетона, прочность бетона каждого контролируемого участка и фактический класс бетона по прочности, рассчитанный по ГОСТ 18105 .

Форма таблицы результатов испытаний приведена в приложении Ж.

Приложение А (обязательное). Способы прозвучивания бетона

А.1 Сквозное прозвучивание

При измерении времени распространения ультразвука при сквозном прозвучивании ультразвуковые преобразователи устанавливают с противоположных сторон образца или конструкции в соответствии с рисунком А.1а.

Скорость ультразвука . м/с, вычисляют по формуле


где - время распространения ультразвука, мкс;

- расстояние между центрами зон установки преобразователей (база прозвучивания), мм.

А.2 Поверхностное прозвучивание

При измерении времени распространения ультразвука при поверхностном прозвучивании ультразвуковые преобразователи устанавливают на одной стороне образца или конструкции в соответствии с рисунком А.1б.

Рисунок А.1 - Схемы испытания бетона ультразвуковым методом


а - схема испытания бетона при сквозном прозвучивании; б - схема испытания бетона при поверхностном прозвучивании; УП - ультразвуковые преобразователи; - база прозвучивания

Рисунок А.1 - Схемы испытания бетона ультразвуковым методом

Приложение Б (рекомендуемое). Методика установления, корректировки и оценки параметров градуировочных зависимостей

Б.1 Уравнение градуировочной зависимости

Уравнение градуировочной зависимости (косвенный показатель - прочность) принимают линейным по формуле


где - прочность бетона, МПа;

- косвенный показатель (время или скорость ультразвука).

Коэффициенты и рассчитывают по формулам:


где - прочность бетона на -м участке, определенная при испытании образцов или методом отрыва со скалыванием, МПа;

- косвенный показатель на -м участке (образце), определенный в соответствии с требованиями раздела 6;


где - число участков или отдельных образцов, использованных для построения градуировочной зависимости.

Б.2 Отбраковка результатов испытаний

После построения градуировочной зависимости по формуле (Б.1) проводят ее корректировку путем отбраковки единичных результатов испытаний, не удовлетворяющих условию


где - остаточное среднеквадратическое отклонение, определенное по формуле


- прочность бетона на i-м участке, определенная по градуировочной зависимости по формуле


где . - коэффициенты для установленной градуировочной зависимости.

После отбраковки минимальное и максимальное значения косвенного показателя . и градуировочную зависимость устанавливают вновь по оставшимся результатам испытания по формулам (Б.1)-(Б.5).

Б.3 Параметры градуировочной зависимости

Среднеквадратическое отклонение построенной градуировочной зависимости определяют по формуле (Б.7).

Коэффициент корреляции градуировочной зависимости определяют по формуле

Б.4 Корректировка градуировочной зависимости

Корректировка установленной градуировочной зависимости с учетом дополнительно получаемых результатов испытаний должна проводиться не реже одного раза в месяц.

При корректировке градуировочной зависимости к существующим результатам испытаний добавляют не менее трех новых результатов. По мере накопления данных для построения градуировочной зависимости результаты предыдущих испытаний, начиная с самых первых, отбраковывают так, чтобы общее число результатов не превышало 20. После отбраковки единичных результатов испытаний, не удовлетворяющих условию (Б.6) и добавления новых результатов минимальное и максимальное значения косвенного показателя, градуировочную зависимость и ее параметры устанавливают вновь по формулам (Б.1)-(Б.9).

Б.5 Условия применения градуировочной зависимости

Применение градуировочной зависимости для определения прочности бетона в соответствии с требованиями настоящего стандарта допускается только для значений косвенного показателя, попадающего в диапазон от до .

Если коэффициент корреляции 0,7 или среднеквадратическое отклонение градуировочной зависимости 0,15, то контроль и оценка прочности по полученной градуировочной зависимости не допускаются.

Приложение В (справочное). Пример установления и оценки параметров градуировочной зависимости


В настоящем приложении приведен пример установления и оценки параметров градуировочной зависимости бетонов классов прочности В20-В25.

Прочность бетона классов В20-В25 контролируют в конструкции методом поверхностного прозвучивания. Для установления градуировочной зависимости между скоростью ультразвука и прочностью бетона в возрасте 28 сут выполнены параллельные испытания одних и тех же участков конструкций ультразвуковым методом и методом отрыва со скалыванием по ГОСТ 22690. Результаты испытаний приведены в графах 2, 3 таблицы В.1.

Средние значения прочности по результатам испытаний и скорости ультразвука определяют по формулам (Б.4) и (Б.5) приложения Б:

Коэффициенты и определяют по формулам (Б.2), (Б.3) приложения Б:

Установленная градуировочная зависимость описывается уравнением . где - скорость ультразвука, м/с.

Остаточное среднеквадратическое отклонение, определенное по формуле (Б.7) приложения Б, равно

Сравнивая для различных участков значения фактической прочности с прочностью . определенной по градуировочной зависимости (см. таблицу В.1), устанавливают, что условие (Б.6) приложения Б не выполняется для результатов на участке 19, которые подлежат отбраковке.

По оставшимся 18 результатам рассчитывают новые средние значения прочности . скорости ультразвука . коэффициенты и и среднеквадратическое отклонение для градуировочной зависимости:

* м/с.
_______________
* Формула соответствует оригиналу. - Примечание изготовителя базы данных.

Для скорректированной градуировочной зависимости вида условие (Б.6) приложения Б выполняется на всех участках. Дальнейшую отбраковку проводить не требуется. Графики градуировочных зависимостей до и после корректировки приведены на рисунке В.1.

Рисунок В.1 - Градуировочная зависимость


Рисунок В.1 - Градуировочная зависимость

Среднеквадратическое отклонение построенной градуировочной зависимости

Коэффициент корреляции градуировочной зависимости вычисляют по формуле (Б.9) приложения Б при МПа.

Полученная градуировочная зависимость может быть использована для определения прочности бетона в конструкции в соответствии с требованиями настоящего стандарта в диапазоне прочностей 11,3-40 МПа.

Приложение Г (рекомендуемое). Универсальные градуировочные зависимости, построенные по результатам испытаний конструкций в возрасте 20-30 сут Рисунок Г.1 - Универсальная градуировочная зависимость, построенная по результатам испытаний конструкций из бетона проектных классов В7,5-В35


Рисунок Г.1 - Универсальная градуировочная зависимость, построенная по результатам испытаний конструкций из бетона проектных классов В7,5-В35

Рисунок Г.2 - Универсальная градуировочная зависимость, построенная по результатам испытаний конструкций из бетона проектных классов В35-В60


Рисунок Г.2 - Универсальная градуировочная зависимость, построенная по результатам испытаний конструкций из бетона проектных классов В35-В60

Приложение Д (обязательное). Методика уточнения градуировочной зависимости


Для уточнения градуировочной зависимости, установленной для бетона, отличающегося от испытуемого, значение прочности бетона, определенное с использованием этой градуировочной зависимости, умножают на коэффициент совпадения . определяемый по формуле


где - прочность бетона в участке, определяемая методом отрыва со скалыванием по ГОСТ 22690 или испытанием кернов по ГОСТ 28570 ;

- прочность бетона в участке, определяемая ультразвуковым методом по используемой градуировочной зависимости;

- число участков, принимаемое не менее трех.

При вычислении коэффициента совпадения должны быть соблюдены следующие условия:

- каждое частное значение должно быть не менее 0,7 и не более 1,3:


- каждое частное значение должно отличаться от среднего значения не более чем на 15%


Значения . не удовлетворяющие приведенным выше условиям, не должны учитываться при вычислении коэффициента совпадения .

Приложение Е (обязательное). Назначение числа участков испытаний монолитных и сборных конструкций


При контроле прочности бетона сборных конструкций (отпускной или передаточной) число контролируемых конструкций каждого вида принимают не менее 10% и не менее 12 конструкций из партии. Если партия состоит из 12 конструкций и менее, проводят сплошной контроль. При этом число испытуемых участков должно быть не менее:

- 1 на 4 м длины линейных конструкций;

- 1 на 4 м площади плоских конструкций.

При контроле прочности бетона монолитных конструкций в промежуточном возрасте контролируют не менее одной конструкции каждого вида (колонна, стена, перекрытие, ригели и т.д.) из контролируемой партии.

При контроле прочности бетона монолитных конструкций в проектном возрасте проводят сплошной контроль прочности бетона всех конструкций контролируемой партии. При этом число участков испытаний должно быть не менее:

- 3 на каждую захватку для плоских конструкций (стена, перекрытие, фундаментная плита);

- 1 на 4 м длины (или 3 на захватку) для каждой линейной горизонтальной конструкции (балка, ригели);

- 6 на каждую конструкцию (для линейных вертикальных конструкций - колонна, пилон).

Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20.

Правило выбора единичного значения прочности при применении неразрушающих методов определения прочности в зависимости от вида конструкций приведены в приложении А ГОСТ 18105 .

Приложение Ж (рекомендуемое). Форма таблицы результатов испытаний

_________________________________________________________________________________________
УДК 691.32:620.179.16:006.354 МКС 91.100.30 Ж19

Ключевые слова: бетон, контроль прочности бетона, ультразвуковой метод, сквозное прозвучивание, поверхностное прозвучивание
_________________________________________________________________________________________

Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
издание официальное
М. Стандартинформ, 2014

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

Фактическая дата официального опубликования стандарта - май 2014 года (информация с сайта http://www.gost.ru/ по состоянию на 16.05.2014)

М. Стандартинформ, 2014 год

27 декабря 2012

Дата начала действия:

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

Данный документ представлен в виде сканер копии, которую вы можете скачать в формате pdf или djvu

Этот документ входит в профессиональные справочные системы «Техэксперт»

  • Нормы, правила, стандарты и законодательство по техрегулированию
  • Типовая проектная документация
  • Технологические описания оборудования и материалов
  • Федеральное законодательство
  • Региональное законодательство
  • Образцы документов
  • Все формы отчетности
  • Законодательство в вопросах и ответах

Все права на материалы сайта docs.cntd.ru принадлежат ЗАО «Кодекс»,
воспроизведение (целиком или частями) материалов может производиться только по письменному разрешению правообладателя

Версия сайта: 2.2.7

Каждому техническому специалисту: строителю, проектировщику, энергетику, специалисту в области охраны труда.